7-(Alkyl- and Aralkylaminoalkylamino)-benz[c]acridines

Ether, Dioxane, Methanol and Acetic Acid.-When solutions of I in the preceding solvents were refluxed for 3 hours and the solvents evaporated, there remained orange-colored
oils from which only PCP was isolated; PCP was obtained in yields of 57,64 and 68%, respectively.
China Lake, Calif.
[Contribution from the Research Laboratories, Parke, Davis and Co.]
Synthetic Amebicides. III. 7-(3-Octylaminopropylamino)-benz [c]acridine (PAA-2056) and Related 7-(Alkyl- and Aralkylaminoalkylamino)-benz [c]acridines ${ }^{1,2}$

By Franklin W. Short, Edward F. Elslager, Alexander M. Moore, Marie Jo Sullivan and Frank H. Tendick
Received July 26, 1957

A series of new 7-(alkyl- and aralkylaminoalkylamino)-benz[c]acridines have been prepared by the condensation of a 7 -chlorobenz [c]acridine with the appropriate N -(alkyl or aralkyl)-diaminoalkane, by the action of an alkylamine on a 7 haloalkylaminobenz[c]acridine, or by ring-closure of an N-(alkylaminoalkyl)-2-(1-naphthylamino)-benzamide with phosphorus oxychloride. Acylation of 7-(3-hexyl- and heptylaminopropylamino)-benz[c]acridines with acetic anhydride gave the corresponding N -[3-(benz[c]acridin-7-ylamino)-propyl]-N-hexyl- and heptylacetamides. The 7 -(alkyl and aralkyl-aminoalkylamino)-benz[c$]$ acridines were highly active when tested against Endamoeba histolytica in vitro, acute intestinal amebiasis in rats, amebic colitis in dogs and amebic hepatitis in hamsters.

In a previous communication, ${ }^{2}$ we reported the preparation of a number of 7-dialkylaminoalkylaminobenz [c]acridines which possessed good antiamebic activity against Endamoeba histolytica in vitro, against intestinal amebiasis in rats and against amebic hepatitis in hamsters. During the course of continuing efforts in these laboratories to develop new antiamebic drugs, we have synthesized a group of 7 -(alkyl and aralkylamino-alkylamino)-benz[c]acridines (V). In structure V, X represents hydrogen or chlorine, Y a divalent alkyl group and R an alkyl or aralkyl radical.
aralkyl)-diaminoalkane in phenol. The 7 -chlorobenz[c]acridines were prepared by ring-closure of an N -1-naphthylanthranilic acid (I) with phosphorus oxychloride as described previously. ${ }^{2}$ A1ternatively, the N-1-naphthylanthranilic acid was converted to the N-1-naphthanthraniloyl chloride by the action of phosphorus pentachloride in boiling benzene. Treatment of an N -alkyldiaminoalkane with the acid chloride yielded the corresponding amide IV which was not isolated but was ringclosed in situ with phosphorus oxychloride to the desired aminobenz[c]acridine. A third route in-

Table I
N-(Alkyl- and Aralkyl)-1,3-diaminopropanes, $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3}$ NHR

R	${ }^{\circ} \mathrm{C}$.	B.p., Mm.	$n^{2}{ }^{\text {b }}$	Yield, $\%$	Procedure	Formula	$\begin{array}{ll} \text { Nitrogen, } \\ \text { Calcd. } & \text { Found } \end{array}$	
			Bases ${ }^{\text {a }}$					
$-\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$	110-120	7.5-8.0	1.4512	45	I	$\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{2}$	16.26	16.38
$-\mathrm{CHC}_{2} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	64-68	0.9	1.4487	54	II	$\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{2}$	16.26	16.47
$-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	110-115	1.5	1.5268	34	III	$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2}$	15.72	15.87
$-\mathrm{CH}\left[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right]\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	72-77	0.7	1.4488	22	III	$\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{~N}_{2}$	15.04	15.01
$-\mathrm{CH}_{2} \mathrm{CHC}_{2} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	75-80	0.6	1.4518	73	III	$\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{~N}_{2}$	15.04	15.19
$-\mathrm{CHCH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	90-95	2.0	1.4506	51	II	$\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{~N}_{2}$	15.04	$15.51^{\text {c }}$
$-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{5}$	120-126	1.5	1.5213	57	III	$\mathrm{C}_{12} \mathrm{~N}_{20} \mathrm{~N}_{2}{ }^{\text {d }}$	14.57	13.96

R	M.p., ${ }^{\circ} \mathrm{C}$.	Yield, \%	Procedure	Formula	Calcd.	${ }^{70} \text { Found }$
$-\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}$	290-292 dec. ${ }^{\text {e }}$	79^{f}	II	$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	10.25	$9.58{ }^{\text {g }}$
$-\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}_{3}$	293-295 dec. ${ }^{\text {© }}$	86^{\prime}	II	$\mathrm{C}_{13} \mathrm{H}_{30} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	9.75	9.38^{h}
$-\left(\mathrm{CH}_{2}\right)_{15} \mathrm{CH}_{3}$	275-278 ${ }^{\text {e }}$	70^{\prime}	II	$\mathrm{C}_{10} \mathrm{H}_{42} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	7.54	7.35

${ }^{a}$ The bases were obtained as colorless liquids. ${ }^{b}$ The dihydrochlorides were isolated as colorless solids. a Anal. Calcd.: C, $70.90 ; \mathrm{H}, 14.07$. Found: $\mathrm{C}, 70.86 ; \mathrm{H}, 14.13$. ${ }^{\text {d }}$ Dihydrochloride crystallized from aqueous 2-propanol, m.p. 272-273 ${ }^{\circ}$. Anal. Calcd.: N, 10.56. Found: N, 10.80. © Crystallized from ethanol. ${ }^{\prime}$ Crude. a Anal. Calcd.: C, 52.73; H, 11.07. Found: C, $53.01 ; \mathrm{H}, 10.81$. 'Anal. Calcd.: C, $54.34 ; \mathrm{H}, 11.23$. Found: C, $54.40 ; \mathrm{H}, 11.29$.

The synthesis of the 7 -(alkyl- and aralkylamino-alkylamino)-benz[c]acridines (Table II) was achieved by three routes as illustrated by formulas I through VI. The method most extensively employed was the condensation of a 7 -chlorobenz[c]acridine (II) with the appropriate N -(alkyl or
(1) Presented before the Division of Medicinal Chemistry at the 131st National A. C. S. Meeting, April, 1957, in Miami, Fla.
(2) For previous paper in this series see E. F. Elslager, A. M. Moore, F. W. Short, M. J. Sullivan and F. H. Tendick, This Journal, 79, 4699 (1957).
volved the condensation of a 7 -chlorobenz [c]acridine with an aminoalkanol to give a benz[c]-acridin- 7 -ylaminoalkanol (III), ${ }^{2}$ which upon treatment with thionyl chloride or a constant boiling hydrobromic acid-sulfuric acid mixture yielded the 7-haloalkylaminobenz[c]acridine (VI, where Hal represents Cl or Br). The condensation of a 7 haloalkylaminobenz [c]acridine with an alkyl amine in 1-pentanol at 100° gave the desired 7 -alkylaminoalkylaminobenz[c]acridine (V). However, in one

Table II

a All compounds were yellow or yellow-green solids. Samples for analysis were dried at 40 to 100° in pano over Patat, then allowed to stabilize as hydrates by exposure to the air for severnl homrs. "C $\mathrm{C}_{20} \mathrm{H}_{29}$ represents the $1,2,3,4,4 \mathrm{~A}, 9,10,10 \mathrm{~A}$-octahydro-7-isopropyl-1,4A-dinethyl-1-phenanthryhethyl group. c Karl Fischer method. d Volatile loss at

case in which a large excess of the boiling amine was employed as solvent, a side reaction involving displacement of the 7 -haloalkylamino group occurred with the formation of the 7 -alkylaminobenz[c]acridine. Thus, when 10 -chloro- 7 -(2-chlo-roethylamino)-benz [c]acridine hydrochloride (VII) was boiled under reflux for four hours with a large excess of hexylamine, 10 -chloro- 7 -hexylaminobenz[c]acridine (VIII) was isolated in 77% yield. Under similar conditions, VIII was obtained in 82% yield from 10 -chloro- 7 -(5 -(1 -piperidinyl)-pen-tylamino]-benz[c]acridine dihydrochloride (IX) ${ }^{2}$ and hexylamine; the melting point of a mixture of either sample with an authentic sample of VIII

prepared from 7,10 -dichlorobenz[c]acridine ${ }^{2}$ and hexylamine was not depressed. An analogous displacement reaction involving the quinoline nucleus has been reported by Fulton and co-workers ${ }^{3}$; t-methylaminoquinaldine and 4 -(2-methylanino-ethylamino)-quinaldine were isolated fronn the interaction of methylamine and 4-(2-chloroethyl-amino)-quinaldine, while 2 -anilino-4-benzylaminoquinoline together with 2 -anilino-4-(2-benzylam-inoethylamino)-quinoline were obtained from benzylanine and 2 -anilino-4-(2-chloroethylamino)quinoline. The proportion of the 4 -methyl- and
(3) J. D. Fulton, L. P. Joyner, H. King, J. M. Osbond and J. Wright, Proc. Roy. Soc., Ser. B, 137, 339 (1950).

4-benzylaminoquinolines increased with elevation of reaction temperatures.

Absorption in the ultraviolet and low wave length visible range was advantageously employed in the characterization of many of the 7 -aminobenz[c]acridines reported herein. Absorption curves for representative 7 -aminobenz[c]acridines have been described previously. ${ }^{2}$

A number of the intermediate N -(alkyl and aralkyl)-diaminoalkanes (Table I) which were prepared have not been reported previously. A majority of these new diamines were synthesized by alkylation of a diaminoalkane with an alkyl bromide or chloride. Where this reaction yielded a solid crude product, it was expedient to convert the crude material to the dihydrochloride for purification and characterization. N-Heptyl-1,3-diaminopropane was obtained by cyanoethylation of heptylamine followed by catalytic hydrogenation of the intermediate 3 -heptylaminopropionitrile according to standard procedures. ${ }^{4}$

Two N-acetyl derivatives in the 7 -alkylaminoalkylaminobenz[c]acridine series were prepared in order to study the influence of acetylation on antiamebic activity. Acylation of 7-(3-hexyl and heptylaminopropylamino)-benz [c]acridines with acetic anhydride gave the corresponding N - $[3-$ (benz[c]acridin - 7 - ylamino) - propyl] - N - hexyland heptylacetamides (X a and b).

When an aqueous solution of two molar equivalents of potassium penicillin G was added in one portion to a methanol solution of 7 -(3-octylamino-propylamino)-benz[c]acridine dihydrochloride, a monopenicillin salt was obtained. However, when more dilute solutions were used and the benzacridine solution was added dropwise to the penicillin solution, a dipenicillin salt separated. Identification of the salts was based upon elementary analysis.

The 7-(alkyl- and aralkylaminoalkylamino)benz[c]acridines and N -[3-(benz[c]acridin-7-yla. mino)-propyl]-N-hexyl and heptylacetamides described in the present comntunication were tested by Thompson and co-workers of these laboratories
(4) D. S. Tarbell. N. Shakespeare, C. J. Claus and J. F. Bunnett, This Journal, 68, 1218 (1946).
against Endamoeba histolytica in vitro, ${ }^{5}$ and when indicated, against acute intestinal amebiasis in rats, ${ }^{6}$ amebic colitis in dogs 7 and amebic hepatitis in hamsters. ${ }^{8}$ Although details of these test results will be published in a separate communication, ${ }^{9}$ it might be mentioned here that 7 -(3 -octylamino-propylamino)-benz [c]acridine, dihydrochloride (XI) (PAA-2006) was one of the most promising compounds tested. This compound was active against

intestinal amebiasis in rats and dogs and against amebic hepatitis in hamsters. ${ }^{10}$ The salts of 7 -(3-octylaminopropylamino)-benz[c]acridine with 8 -hydroxy-7-iodo-5-quinolinesulfonic acid and benzyl penicillin were likewise observed to have particularly interesting antiamebic properties. N - [3-(Benz[c]acridin-7-ylamino)-propyl]-N-hexyl and heptylacetamide possessed only slight antiamebic activity in vitro and in rats.

Acknowledgment.-We thank Dr. Loren M. Long and Dr. George Rievesch1, Jr., for encouragement in this investigation, Dr. Paul E. Thompson, Miss Anita Bayles, Mr. D. A. McCarthy and Mr. J. W. Reinertson for the biological testing, and Miss Gladys Z. Manougian and Mrs. Doris R. Thonlas for synthesizing several of the conpounds described hereirl. The authors also are indebted to Mr. Charles E. Childs and associates for the microanalyses, and to Dr. J. M. Vandenbelt and associates for determination and interpretation of the infrared and ultraviolet absorption spectra.

Experimental ${ }^{11}$

Methods for Preparing N-(Alkyl- and Aralkyl)-1,3-diallinopropanes (Table I). Method I.-The following procedure is illustrative of the method involving cyanoethylation of an alkylanine followed by catalytic liydrogenation of the intermediate alkylaninopropionitrile:
A procedure analogous to that employed by Tarbell, ot al., ${ }^{4}$ for the preparation of the butyl homolog was used; 32.9 ml . (0.50 mole) of acrylonitrile was added dropwise with stirring orer a period of 80 minutes to 111 nil. (0.75 anole) of heptrlamine, maintaining the temperature below 30°. The solution was allowed to stir at room temperature for 5 hr ., heated on a stearn-bath for 1.5 hr . and distilled in vacuo. 3 -Heptylaminopropionitrile was obtained as a colorless liquid, b.p. $9 \overline{5}-98^{\circ}$ (1 mm .), $n^{25} 1.4440$, yield 78.5 g . (93%).

Anal. Calccl. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2}: \mathrm{N}^{2}, 16.6 \overline{5}$. Found: $\mathrm{N}, 16.83$.

[^0]Subsequently, a solution of 75 g . (0.445 mole) of 3 -heptylaminopropionitrile in 200 ml . of ethanol saturated with ammonia was hydrogenated over Raney nickel (V-4) at 1500 p.s.i.g. and 147° initial pressure and temperature. The mixture was filtered, the volatile materials were removed and the residue distilled in vacto through a six-inch Vigreux column.
Method II.-The following procedure illustrates the gencral method employed for the alkylation of 1,3 -dianimopropanc with an alkyl bronide:
1,3-Dianinopropane (100 ml ., 1.20 moles) was stirreci and heated to 100°. 3 -Bromoleptane ($53 . \overline{5} \mathrm{~g}$., 0.30 mole: was then added dropwise over a period of 30 minutes, the mixture was boiled gently under reflux for 3 hr . and stirred at room temperature for 18 hr . A solution of 15 g . 0.3 s nuole) of sodiun hydroxide in $2 \overline{5} 1111$. of water was added, tine mixture was extracted with several portions of ether and the combined ether extracts were dried over anliydrous potassium carbonate. The ether was removed, and the residue distilled in vacue through a Vigreux colunn.
Method III.-The following procedure is typical far the alkylation of a dianinoalkane with an alkyl chloride:
Utilizing the above procedure, 50 g . (0.49 mole) of 1,5 diaminopentane and 20.5 nll . 0.12 nole of octyl chloride gave 19 g . ($74(\%)$) of crude semi-solid product. A solution of this crude dianine in 2 -propanol was treated witl a 2 -pro-panol-hydrogen chloride solution to give the crucle λ-oct 1 $1, \overline{\text { - }}$-dianimopentane dilydrochloride. Crystallization from 2 -propanol gave the pure sult as colorless crystals, in.p. $29.5^{\circ} \mathrm{dec}$.
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{30} \mathrm{~K}_{2} \cdot 2 \mathrm{HCl}$: , 9.75. Found: N, 9.61 .
Methods for Preparing 7-(Alkyl- and Aralkylaminoalkyl-aminoi-benz[c] acridines (Table II). Method I.--A mixture of 0.042 to 0.200 mole of the appropriate amine, 40 to 70 g . of phenol and 0.038 to 0.120 mole of the 7 -chlorobenz [c]acridine 2 was stirred and heated at $100-140^{\circ}$ for 2 hir., coolct and poured with stirring into a mixture of 125 to $\overline{5} 00$ m11. of acctone and 5 to 25 ml . of concentrated hydrochloric acid. Upon standing for 20 to 48 hr., a yellow precipitate formed, which was collected by filtration, washed with acctone and dried. Recrystallizition (decolorizing charcoal) from the appropriate solvent vielded the desired anine hydrochloride.
Method II.-A mixture of 0.079 to 0.358 mine of the -chlorobenz [c]acridinc. 0.07 .5 to 0.300 mole of the appropriate amine and 60 to 160 g . of plenel was stirred and leatect on the stean-bath for 3 to 4 hir. The reaction was protected from moisture by a calciun1 cliloride tube. The reaction ninixture was cooled, and poured slowly with stirring into" to 41 . of acetone containing an excess of ethanolic liydrogen chloride. The crude product was collected by filtratinn. washed with acetone and dried in zacuo at 60° for 18 lir. The hydrochloride was dissolved in water and the watcr solution extracted thorouglay with chlorof ern1. The connbined chloroform extracts were washed twice with dilut: hydrochloric acid and the acid extracts combined with the original acid layer. The chlorofornm solntion was discarded. The acid solution was filtered anit made stronglalkaline with concentrated annmonium hydroxide. The base which separated was extracted with several portions of chloroform, and the conbined chloroform extracts werc washed thoroughly witio dilute sodium lyydroxide solution and water, treated witio decolorizing charcoal and evaporated to an oil. The oily residue was dissolved in ethanch, treated with excess ethanolic hydrogen chloride and the minixture diluted with several volumes of acetone and chilled. The product was collected by filtration, washed with acctone and dried in vactoo at 60° for 18 hr . The hygroscopic Sample was equilibrated in the air prior to analysis.
Method III.-A mixture of 1.8 g . ($0.00 \overline{5}$ mole, of 7 - $\%-$ bromopropylamino)-benz [c]acridine- 1.3 g . (0.010 mole) of oct ylanine and 5 ml . of 1-pentanol was heated on the steanbath for 16 hr . witl mechanical stirring. The solvent and excess octylamine were removed in vacuo, 5 ml . of water was added and the mixture again concentrated in vacun. The residue was made strongly alkaline with 10% sodium hydroxide solution and the base extracted with ether. The combined ether extracts were washed thornughly with water, dried for 24 hr. over anhydrous potassiun carbonate and the (Irsing agent collected by ilteration. Dry hydrogen chloride was bubbled into the dry ether solution, the yellow precipitate was collected by filtration and dried in vacuo at 40° for

18 hr . Crystallization from water gave 1.1 g . (44\%) of the desired salt, m.p. $255-257^{\circ}$. The melting point of a mixture with a sample prepared by method I was $253-256^{\circ}$.

Method IV.-A solution of 6 g . (0.019 mole) of 4-chloro-N-1-naphthanthraniloyl chloride in 100 nl . of dry thio-plene-free benzene was added dropwise over a period of 45 minutes to a hot stirred solution of 6.3 g . (0.040 mole) of N -hexyl-1,3-diaminopropane in 100 ml . of dry thiophene-free benzene and the mixture stirred and boiled under reflux for 1 hr . Subsequently, 14 ml . ($23.3 \mathrm{~g} ., 0.152 \mathrm{~mole}$) of phosphorus oxychloride in 20 ml . of dry thiophene-free benzene was added dropwise to the mixture over a period of 15 minutes and the resulting mixture stirred and boiled under reflux for an additional 11 hr . The cooled reaction mixture was poured slowly into ice-water and heated to evaporate most of the benzene. The aqueous suspension was made strongly alkaline with concentrated ammonium hydroxide and extracted with chloroform. The combined chloroform extracts were washed with four portions of water, filtered and the chloroform solution evaporated in vacuo to an amber oil. This residue was dissolved in ethanol, treated with excess ethanolic hydrogen chloride, diluted with several volumes of acetone and chilled. The yellow precipitate was collected by filtration, washed successively with acetone and ether and dried in vacuo at 60° for 18 hr . The product was exposed to the air for 18 hr . prior to analysis.

7-[3-(2,3-Dimethyl-3-piperidyl)-propylamino]-benz [c]-acridine.-A mixture of 7.4 g . (0.028 mole) of 7 -chlorobenz[c]acridine ${ }^{2}$ and 25 g . of phenol was heated on the steambath for 15 minutes with shaking. To this mixture was added 5 g . (0.029 mole) of 3-(3-aminopropyl)-2,3-dimethylpiperidine ${ }^{12}$ and the mixture was stirred and heated on the steam-bath for 3 hr . The cooled reaction mixture was poured into a solution of 10 ml . of concentrated hydrochloric acid in 300 ml . of acetone; the supernatant liquid was decanted from the red oil which separated. The oil was dissolved in water and poured slowly with vigorous stirring into an excess of 5% sodium hydroxide solution. The precipitated olive-green base was collected by filtration, dried in vacuo, pulverized and submitted for analysis; yield 6.0 g. (50%), m.p. $60-65^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3}$: $\mathrm{C}, 81.57 ; \mathrm{H}, 7.86 ; \mathrm{N}, 10.57$. Found: C, 81.43; H, 7.07; N, 10.83.

7-(3-Octylaminopropylamino)-benz[c]acridine, Salt with Two Formula Weights of 8-Hydroxy-7-iodo-5-quinolinesulfonic Acid.-A filtered solution of 15.1 g . (0.030 mole) of 7 -(3-octylaminopropylamino)-benz [c]acridine dihydrochloride monohydrate in 1 . of hot water was added with stirring to a filtered solution of 2.4 g . (0.060 mole) of sodium hydroxide and 22.1 g . (0.063 mole) of 8-hydroxy-7-iodo-5-quinolinesulfonic acid in 11. of hot water. The red oil which deposited solidified on cooling, was ground up with water, collected by filtration, washed with water and dried at room temperature in vacuo giving 30.0 g . (90%) of the salt as a red solid of indefinite melting point.

Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{INO}_{4} \mathrm{~S}: \mathrm{C}, 49.51 ; \mathrm{H}$, $4.24 ; \mathrm{N}, 6.28$. Found: C, $49.14 ; \mathrm{H}, 4.17$; N, 6.19.

7-(3-Octylaminopropylamino)-benz[c]acridine, Salt with One Formula Weight of Penicillin G.-A solution of 14.5 g . (0.0390 mole) of potassium penicillin G in 100 ml . of water was added in one portion to a solution of 10.0 g . (0.0195 mole) of 7-(3-octylaminopropylamino)-benz[c]acridine dihydrochloride sesquihydrate in 40 ml . of methanol. A goldcolored gum deposited. The mixture was chilled, the supernatant liquid decanted and the gum washed with water by decantation and triturated with ether. The yellow solid obtained was collected rapidly by filtration, washed with ether and petroleum ether (b.p. $30-60^{\circ}$) and dried at room temperature in vacuo, giving $13.5 \mathrm{~g} .(8, \%)$ of a hydrated salt with indefinite melting point.

Anal. Calc木. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \cdot \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C}$, $66.64 ; \mathrm{H}, 7.37$; $\mathrm{N}, 8.83$; S, 4.04. Found: $\mathrm{C}, 66.81,66.93$; H, 7.61, 7.54; N, 8.85; S, 4.18, 4.29.

7-(3-Octylaminopropylamino)-benz[c]acridine, Salt with Two Formula Weights of Penicillin G.-A chilled, filtered solution of 50.5 g . (0.10 mole) of 7 -(3-octylaminopropyl-amino)-benz[c]acridine dihydrochloride monohydrate in 750 ml . of methanol was added dropwise to a chilled, filtered

[^1]solution of 82.0 g . (0.22 mole) of potassium penicillin G in 1.51 . of water. The yellow gum which separated was washed by decantation with water and then with ether, and obtained solid by grinding successively under benzene, ether and petroleum ether (b.p. $30-60^{\circ}$). The product was collected and dried at room temperature in vacuo giving 93 g . (84%) of a hydrated salt, m.p. 75° dec.

Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \cdot 2 \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$: C, $64.95 ; \mathrm{H}, 6.72$; $\mathrm{N}, 8.84 ; \mathrm{S}, 5.78$. Found: C, $65.42,65.05$; $\mathrm{H}, 6.97,6.82$; N, 8.87, 8.70; S, $5.53,5.70$.

N-[3-(Benz [c]acridin-7-ylamino)-propyl)-N-hexylacetamide, Salt with One Formula Weight of 3-Hydroxy-2naphthoic Acid.- A dry ether solution of 7-(3-hexylamino-propylamino)-benz [c]acridine, prepared from 5.0 g . (0.0105 mole) of the dihydrochloride monohydrate, was treated with 5 ml . (0.0500 mole) of acetic anhydride and kept at room temperature for 2.5 hr . Upon the addition of a solution of 2.0 g . (0.0106 mole) of 3 -hydroxy- 2 -naphthoic acid in 50 ml . of dry ether, an oil separated which solidified on standing for 20 hr . The ether solution was decanted, the solid was triturated with ether, collected by filtration, pulverized under petroleum ether (b.p. $30-60^{\circ}$) and dried, giving $4.8 \mathrm{~g} .(74 \%)$ of the desired product as a yellow powder, m.p. $91-92^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}: \mathrm{C}, 76.07 ; \mathrm{H}, 6.71$; $\mathrm{N}, 6.82$. Found; $\mathrm{C}, 75.92 ; \mathrm{H}, 6.54 ; \mathrm{N}, 6 . \overline{7} 2$.

N -[3-(Benz [c]acridin-7-ylamino)-propyl]-N-heptylacetamide, Salt with One Formula Weight of 3-Hydroxy-2naphthoic Acid.-This compound was prepared by the procedure described above for the hexyl homolog, starting from 5.0 g . (0.0102 mole) of 7-(3-heptylaminopropylamino)-benz[c]acridine dihydrochloride monohydrate; yield 5.2 g . (81%) of yellow solid, m.p. $99-100^{\circ}$

Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}: ~ \mathrm{C}, 76.28 ; \mathrm{H}$, 6.88 ; N, 6.67. Found: C, 76.68 ; H, $6.96 ; \mathrm{N}, 7.19,6.89$.

7-(2-Chloroethylamino)-benz[c]acridine, Hydrochloride. -A mixture of 27 g . (0.089 mole) of 2 -(benz[c]acridin-7-ylamino)-ethanol, ${ }^{2} 100 \mathrm{ml}$. of thionyl chloride and 100 ml . of dry chloroform was stirred and heated on a steam-bath for 1.5 hr ., then kept at room temperature for 18 hr . The yellow solid was collected by filtration, washed thoroughly with chloroform and petroleum ether (b.p. $30-60^{\circ}$) and dried in vacuo at 75° for 18 hr .; yield 28.6 g . (91%), m.p. $>300^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClN}_{2} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.78$; $\mathrm{H}, 4.87$; N, 7.95. Found: C, 64.89 ; $\mathrm{H}, 4.71$; $\mathrm{N}, 8.10$.

10-Chloro-7-(2-chloroethylamino)-benz[c]acriđine, Hy -drochloride.-A mixture of 26 g . (0.081 mole) of 2-(10chlorobenz [c]acridin-7-ylamino) -ethanol ${ }^{2}$ and 100 ml . of thionyl chloride was stirred and heated under reflux for 1 hr . The mixture was cooled, and the product collected by filtration and washed with water. Crystallization from ethanol yielded 20 g . (66%) of yellow crystals, m.p. 260-262 ${ }^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot \mathrm{HCl}: \mathrm{N}, 7.42$. Found: N, 7.28.

7-(3-Chloropropylamino)-benz [c]acridine, Hydrochloride. -A mixture of 60.5 g . (0.2 mole) of 3 -(benz[c]acridin-7-ylamino)-propanol ${ }^{2}$ and 300 ml . of thionyl chloride was stirred and heated on the steam-bath for 1 hr . The excess thionyl chloride was removed in vacuo, the residue was triturated with ether, and the product crystallized from absolute ethanol; yield 63.5 g . (87%) of yellow crystals, m.p. 228-230 .

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{2} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.58$; $\mathrm{H}, 5.23 ; \mathrm{N}, 7.65 ; \mathrm{Cl}, 19.36$. Found: $\mathrm{C}, 65.44 ; \mathrm{H}, 5.31$; N, 7.70 ; Cl, 19.39 .

7-(3-Bromopropylamino)-benz[c]acridine.-A mixture of 82 g . (0.28 mole) of 3 -(benz [c] acridin-7-ylamino)-propanol, ${ }^{2}$ 90 ml . of redistilled colorless constant boiling hydrobromic acid (sp. gr. 1.48) and 30 ml . of sulfuric acid (sp. gr. 1.84) was boiled under gentle reflux for 1.5 hr . The mixture was quenched in ice-water and made basic with ammonium hydroxide. The resulting insoluble mass was induced to crystallize by scratching and the yellow crystalline product was collected by filtration, washed with water and dried in vacuo at 45°. Crystallization from methanol (decolorizing charcoal) gave yellow crystals, m.p. 200-202 ${ }^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.17 ; \mathrm{H}$, $4.85 ; \mathrm{N}, 7.49 ; \mathrm{Br}, 21.35$. Found: $\mathrm{C}, 63.81,63.84 ; \mathrm{H}$, $4.90,4.89 ; \mathrm{N}, 7.24 ; \mathrm{Br}, 21.80,21.71$.

10-Chloro-7-hexylaminobenz[c]acridine. A. From 10-Chloro-7-(2-chloroethylamino)-benz[c]acridine, Hydro-chloride.-A mixture of 6.0 g . (0.016 mole) of 10 -chloro- $-7-$ (2-chloroethylamino)-benz [c]acridine hydrochloride and 100 1111, of hexylanine was boiled under reflux for 4 hr . Upon cooling, the reaction mixture was poured into a large volume of ice-water and the precipitate collected by filtration and washed with water. Crystallization fronn ethanol yielded $4.5 \mathrm{~g} .(77 \%)$ of yellow crystals. For analysis, a sample was crystallized from isopropyl alcohol, 111.p. 90-92 ${ }^{\circ}$.
Anal. Caled. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2}: \mathrm{C}, 76.12 ; \mathrm{H}, 6.39 ; ~ \therefore$, $7.79 ; \mathrm{Cl}, 9.77$. Found: C, 76.94 ; I, 6.58; N, 7.90 ; Cl, 9.91 .
B. From 7,10-Dichlorobenz[c]acridine.-A mixture of $0 . \bar{j}$ g. (0.0017 mole) of 7,10 -dichlorobenz [c]acridine ${ }^{2}$ and 100 inl. of hexylanine was boiled under reflux for 4 hr . The excess hexylamine was removed in racuo, the residue was treated with 10% hydrochloric acid, the aqueous solution was decanted and the residue dissolved in absolute ethanol. The ethanol solution was made alkaline with ammonium hydroxide, and the precipitated base was collected by filtration, dried and crystallized from ethanol; yield 0.4 g . $(66 \%), \mathrm{m} . \mathrm{p} .90-92^{\circ}$; the melting point of a mixture with the product from A above showed no depression.
C. From 10-Chloro-7-[5-(1-piperidinyl)-pentylamino]benz[c]acridine, Dihydrochloride.-A mixture of 2.0 g . (0.037 mole) of 10 -chloro- 7 -[5-(1-piperidinyl)-pent vlanino]benz[c]acridine dihydrochloride dihydrate ${ }^{2}$ and 100 ml . of hexplamine was boiled under reflux for $16 \mathrm{hr} .$, cooled, and 75 ml . of hexylamine was removed in vacuo. The residue was potured with vigorous stirring into 500 ml . of water, the
aqueous mixture was acidified with 10% hydrochloric acicl, and the waxy precipitate which separated was collected by filtration, washed with water and air-dried. The crude product was dissolved in 95% ethanol, made alkaline with ammonium hydroxide and the base collected by filtration, dried and crystallized from ethanol. The bise weighed 1.1 g . (82%), ni.p. $90-92^{\circ}$; the melting point of a minture with the prodnct fronn A above slowed no depression.

4-Chloro-N-1-naphthylanthraniloyl Chloride.--Phosphorus pentachloride (30.8 g ., 0.148 inole, was added pertionwise to a suspension of 40 g . (0.135 n nogle) of 4 -chloro-N-(1-naphthyt-anthranilic acid in 350 nnl. of dry petrolennm ether (b.p. 80-110 0°). As each portion was added. the mixture was warmed gently until the reaction subsided. The mixture was boiled under reflux for 40 minutes and the petroleum ether solution decanted from the heavy sedincm which separated. The residue was boiled with petroleunn ether (b.p. $80-110^{\circ}$) and the petroleum ether solutions were discarded. The residue ras dissolved in boiling benzenc. and diluted with petroleum ether (b.p. 80-110 ${ }^{\circ}$, whercupon a flocculent purple solid separated. This inpurity was collected by filtration and discarded. The filtrate was chilled and the crude acid chloride collected by filtration. A second crop was obtained by concentration of the filtratc: crude yield $36 \mathrm{~g} .(84 \%)$. Crystallization fron a benzenepetroleum ether (b.p. $80-110^{\circ}$) mixture (decolorizing charcoal) gave 35 g . ($82 \mathrm{C}_{\mathrm{G}}$) of yellow needles, $1 \mathrm{n} . \mathrm{p} .145^{\circ}$ (lec.
Anal. Calcd, for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}: \mathrm{C}, 64.57 ; \mathrm{H}, 3.51 ; ~ N$, 4.43. Found: C. 65.00; H, 3.7n; N. 4.7.

Detroit, Michigan

[Contribution from the Chemistry Department of Columbia University]

The Reaction of Acyl Peroxides with Phenols ${ }^{1}$

By Cheves Walling and Russell B. Hodgdon, Jr.²
Received Juily 15, 19.97

The reaction between benzoyl (and similar) peroxides and phenols follows second-order kinetics, first order in peroxide and in phenol. The reaction is accelerated by electron-supplying groups on the phenol and retarded by bulky ortho-substituents. Measurements with O-deuterated phenols give $k_{\mathrm{H}} / k_{\mathrm{D}}=1.32 \pm 0.03$ in several systems. The reaction shows meither acid nor base catalysis, but the rate raries significantly with solvent, being slow in strongly hydrogen bonding niedia. Radical traps, polymerizable monomers and iodine, have no effect on reaction rate. It is concluded tliat the reaction is not a radical chain process, but probably involves a simple bimolecular "four-center" process without radical formation, and a possible reaction path is proposed.

In 1944 it was reported ${ }^{3}$ that, while styrene undergoes an only slightly retarded thermal polymerization in phenolic solvents, the benzoyl peroxide initiated polymerization was essentially inhibited. At the same time, it was noted that benzoyl peroxide decomposed very rapidly in m cresol solution, and both results were suggested as arising from either a fast non-radical reaction between peroxide and phenol, or a radical-forming process yielding radicals which were too rapidly consumed by reaction with each other or the phenol to initiate polymerization. In 1947, as part of their now-classic investigation of the induced decomposition of benzoyl peroxide, Bartlett and Nozaki ${ }^{4}$ obtained more quantitative data on the decomposition rate in various phenols, noted that the reaction rate was first order in peroxide, and interpreted their results as the consequence of
(1) Taken from the dissertation of Russell B. Hodgdon, Jr., submitted in partial fulfilment of the requirements of the Ph.D. degree, 1957. Support of this work by a research contract with the Office of Ordnance Research, U. S. Army, is gratefully acknowledged.
(2) Texas Co. Fellow. 1955-1956.
(3) C. Walling. This Journal, 66, 1602 (1944).
(4) P. D. Bartlett and K. Nozaki. ibid. 69, 2299 (1947).
an induced radical chain process. Subsequently, the nature of the products formed on refluxing equimolecular quantities of phenols and benzoy-1 peroxide in chloroform solution have been studied by Cosgrove and Waters ${ }^{\overline{ }}$ who found that phenols with free o-positions give chiefly catechol monobenzoates (I), 2,6-dimethylphenol is converted to 3,3,3'3'-tetramethyldiphenoquinone (II) in ligh yield and 2,4,6-trimethylphenol gives chiefly 2,4,6-trimethyl-4-benzoyloxycyclohexa-2,5-dienone (III). In every case most of the benzoyl peroxide residues not attached to aromatic nuclei are recovered as benzoic acid. In their discussion, Cosgrove and Waters have interpreted their products as the results of radical coupling and disproportionation, without considering the possible consequences of induced decomposition. Subsequently Wesseley and Schinzel ${ }^{6}$ have investigated the decomposition of acetyl peroxide in acetic acid in the presence of each of the three isomeric cresols, obtaining catechol monoacetates (together with lac-

[^2] ibid.', 388 (1951).
(6) F. Wesseley and M. Sch:nzel, Monatsh., 84, 969 (1953).

[^0]: (5) For a description of test methods, see P. E. Thompson. J. W. Reinertson. D. A. McCarthy, A. Bayles and A. R. Cook, Antibiotics und Chemotherapy, 5, 433 (1955).
 (6) For a description of test methods, see P. E. Thompson. M. C. Dunn. A. Bayles and J. W. Reinertson. Am. J. Trop. Med., 30, 203 (1950).
 (7) For a description of test methods, see P. F. Thompson and B. L. Lilligren, ibil., 29, 323 (1949).
 (8) For a description of test methods, see (a) P. E. Thompson and J. W. Reinertson, ibid., 31, 707 (1951); (b) I. W. Reinertson and P. E. Thompson, Proc. Soc. Exper. Biol. am Med., 76, 518 (1951).
 (9) P. 1E. Thompson, unpublished results.
 (10) P. 1E. Thompson. D. A. MeCarthy, J. W. Reinctison. A. Buyles ind H. Najarian. Autibiotics and Chemothorapy. 7, in press.
 (11) Melting points are uncorrected.

[^1]: (12) We are indebted to Dr. C. F. H. Allen of the Eastman Kodak Cu. for making this diamine available to us.

[^2]: (5) S. L. Cosgrove and W, A. Waters, J. Chem. Soc., 3189 (1949);

